Application of gauss law

 Application of gauss Law


1) Electric field intensity due to Uniformly charged  spherical shell or hollow sphere.


Consider a sphere of radius R  charged with a uniform charged density  σ in a dielectric medium ε. Consider a gaussian surface as a sphere with radius r surrounding the charged sphere.Consider a point P where electric field intensity is to be measured.

The total charge on a sphere is given by 
            q = σA
                                             q=σ 4πR---------------(3)
By gauss law, net electric flux is given by  ∅ = q/ε ------------from (1)    
Now due to symmetry , the electric field at each and every point is uniform  and directed radially outward and the direction of area is vector is parallel to direction of electric field .ie. θ= 0 .

We know that , Electric flux is given by,  
  ∅ = ∫ E .ds cos θ------------ from (2)
                            ∅ = ∫ E .ds cos0  ( θ=0)
           ∅ = ∫ E .ds  
                                ∅ =  E .4πr-------------(4)
                                                                   
          From (1) and (4)

                         q/ε0 = E .r2
                                      E =  q/ε0r2
                                     E =σ 4πR/ε0r2   ------------------from(3)
                                          Eσ R/ε0r2 -----------------(A)
                                      Equation (A)  gives Electric field intensity at point P 

                  Case 1: 
 if point P lies on the sphere then  R= r  , then equation (A) changes to 
                  Eσ  /ε0

                Case 2: 
if point P lies inside the sphere , then E= 0  ( electric field inside a sphere is always zero)

2) Electric Field Intensity Due to an Infinitely Long Straight Charged Conductor


Consider a Long charged cylinder of radius R  charged with a uniform charged density  l in a dielectric medium ε. Consider a gaussian surface as a co-axial cylinder with radius r  and length l,surrounding the charged cylinder. Consider a point P where electric field intensity is to be measured.

The total charge on a cylinder  is given by 
            q = ll   ---------------(1)
    
By gauss law, net electric flux is given by  ∅ = q/ε0  -----(2)   
Now due to symmetry , the electric field at each and every point is uniform  and directed radially outward and the direction of area is vector is parallel to direction of electric field .ie. θ= 0 .

          We know that , Electric flux is given by,          
                                          ∅ = ∫ E .ds cos θ
                                                  ∅ = ∫ E .ds cos0  ( θ=0)
                                                  ∅ = ∫ E .ds  
                                                  ∅ =  E .2πrl -------------(4)
                                                                   
                                                                From (2) and (4)

               q/ε0 = E .2πrl 
                E =  q/ε02πrl 
                                                 E =ll /ε02πrl    ------------------from(3)
                                                  E l/ε02πr  ----------------
   Equation (A)  gives Electric field intensity at point P 

Electric field due to infinite Charged Sheet


Consider a Uniformly charged Infinite sheet having area 'A' charged with a uniform charged density σ in a dielectric medium ε. Consider a point P at a Distance 'r' where electric field intensity is to be found.Consider a gaussian surface in form of a cylinder having cross sectional Area 'A' and length 2r.By symmetry, the End cap is parallel to area vector and curved surface area is perpendicular to Electric Field due to sheet.Thus Electric Field is 0 at curved surface.


The total charge on a sheet is given by 
            q = σA ---------------(1)

By gauss law, net electric flux is given by 
        ∅ = q/ε0       -----(2)
We know that , Electric flux is given by,  
  ∅ = ∫ E .ds cos θ
                            ∅ = ∫ E .ds cos0 + ∫ E .ds cos0  ( θ=0)
           ∅ = ∫ 2E .ds  
                                ∅ =  2EA -------------(3)
 From (2) and (3)

                         q/ε0 = 2EA
                                      E =  q/ε02A
                                     E =σ A/2Aε0 
                     Eσ  /2ε0 -----------------(A)


 Related Topic :  Electrostatics      Gauss law     Application of gauss law  concept of potential energy        Concept of potential      Potential energy due to two charges          Potential energy due system of charges         Potential energy due to two dipole          Potential  due to single charges             Potential due to system of  charges        Potential due to tdipole    Dielectric    Capacior   

No comments:

Post a Comment

Email subscription

Powered by Blogger.

Chat

Featured Posts

Featured Posts

Post Top Ad

Search This Blog

Post Top Ad

Spot

Blog Archive

Post Top Ad

Spot

New Content

Recent Posts

Author

Newsletter

Subscribe to my Newsletter

Contact Form

Name

Email *

Message *

Labels