Chapter No:01
_________________________________________
Rotational Dynamics
In our day to day life we come across many interesting activity and we are curious about it, like how sports bike are able to turn at such great speed, how stunt is performed inside well of death (Maut ka kuwa), how top (bhawra) is able to rotate for so long without slipping? and many more.The fact behind all this is Rotational Dynamics.
Rotational stands for a object that is following a circular pattern.
Dynamics stands for object in motion.
We can further Divide Rotational Dynamics into two parts
1) Circular Motion
2) Rotational Motion
Circular Motion : Motion of a particle which is along circumference of a circle is known as circular motion.
Let us understand the concept in very simple way by visualization. In the given figure A, consider a circle of radius 'r' and point 'O' as centre. Let initially a particle is at position P and it displaces till Q. The distance from P to Q is called as linear displacement. At the same time, the position vector 'OP' and 'OQ' traces an angle 'θ' between P to Q at the centre. This is known as Angular displacement.
Fig A |
s : Linear Displacement
θ : Angular Displacement
S = r θ
Linear displacement = radius X Angular displacement
B) Velocity : If the particle takes time t to move from P to Q , then the velocity of the particle can be given by,
Mathematically,
B) Acceleration : It is the ratio of change in velocity per unit time.
As Angular velocity and angular acceleration is a vector quantity , its direction is along the axis of rotation and it is given by right hand thumb rule.
Direction of angular velocity |
Related topics : Rotational dynamics Uniform circular motion Centripetal force vehicle on horizontal curve road well of death banking of road vertical circular motion conical pendulum kinetic energy of rotating body moment of inertia parallel axis theorem perpendicular axis theorem application of moment of inertia Angular momentum torque conservation of angular momentum
No comments:
Post a Comment